El descubrimiento o mejor dicho el desarrollo del circuito eléctrico está íntimamente legado al propio desarrollo de los conocimientos sobre el fenómeno de la electricidad.
Mientras la electricidad en su forma estática era todavía considerada poco más que un espectáculo de salón, las primeras aproximaciones científicas al fenómeno y a su capacidad para ser conducida por algún medio físico fueron hechas sistemáticamente por acuciosos investigadores durante los siglos XVII y XVIII.
Así fue como William Gilbert, hacia el 1600, emplea por primera vez la palabra electricidad y definió el término de fuerza eléctrica como el fenómeno de atracción que se producía al frotar ciertas sustancias. A través de sus experiencias clasificó los materiales en conductores y aislantes e ideó el primer electroscopio.
Poco después, hacia el 1672, Otto von Guericke, físico alemán, también incursionó en las investigaciones sobre electrostática. Observó que se producía una repulsión entre cuerpos electrizados luego de haber sido atraídos. Ideó la primera máquina electrostática y sacó chispas de un globo hecho de azufre, lo cual le llevó a especular sobre la naturaleza eléctrica de los relámpagos.
WILLIAM GILBERT
QUE ES CIRCUITO
Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas. En la figura podemos ver un circuito eléctrico, sencillo pero completo, al tener las partes fundamentales: 1. Una fuente de energía eléctrica, en este caso la pila o batería. 2. Una aplicación, en este caso una lámpara incandescente. 3. Unos elementos de control o de maniobra, el interruptor. 4. Un instrumento de medida, el Amperímetro, que mide la intensidad de corriente. 5. El cableado y conexiones que completan el circuito.
Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas.
Partes De Un Circuito
Para analizar un circuito deben de conocerse los nombres de los elementos que lo forman. A continuación se indican los nombres más comunes, tomando como ejemplo el circuito mostrado en la figura 1.
* Conductor: hilo de resistencia despreciable (idealmente cero) que une eléctricamente dos o más elementos.
* Generador o fuente: elemento que produce electricidad. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2.
* Nodo: punto de un circuito donde concurren varios conductores distintos. En la figura 1 se pueden ver cuatro nodos: A, B, D y E. Obsérvese que C no se ha tenido en cuenta ya que es el mismo nodo A al no existir entre ellos diferencia de potencial (VA - VC = 0).
* Rama: conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, AB por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente.
CIRCUITOS ANALOGOS
Muchas de las aplicaciones electrónicas analógicas, como los receptores de radio, se fabrican como un conjunto de unos cuantos circuitos más simples. Seguidamente se indican algunos ejemplos.
* Multiplicador analógico En electrónica un multiplicador analógico es un dispositivo que toma dos señales eléctricas analógicas y produce una salida cuyo valor es el producto de las entradas. Dichos circuitos pueden ser utilizados para implementar funciones relacionadas tales como los cuadrados (aplica la señal a ambas entradas) y las raíces cuadradas. * Amplificador electrónico Amplificador electrónico puede significar tanto un tipo de circuito electrónico o etapa de este, como un equipo modular que realiza la misma función; y que normalmente forma parte de los equipos HIFI. Su función es incrementar la intensidad de corriente, la tensión o la potencia de la señal que se le aplica a su entrada; obteniéndose la señal aumentada a la salida. Para amplificar la potencia es necesario obtener la energía de una fuente de alimentación externa. * Filtro analógico Los filtros analógicos al igual que cualquier otro tipo de filtro, discriminan lo que pasa a su través atendiendo a algunas de sus características. Al tratarse de filtros electrónicos lo que pasa a su través son señales eléctricas que, en el caso de los filtros analógicos, obviamente, son señales analógicas.
CIRCUITO DIGITAL
Las computadoras, los relojes electrónicos o los controladores lógicos programables, usados para controlar procesos industriales, son ejemplos de dispositivos que se fabrican con circuitos digitales.
La estructura de los circuitos digitales no difieren mucho de los analógicos pero su diferencia fundamental es que trabajan con señales discretas con dos únicos valores posibles. Seguidamente se indican varios ejemplos de bloques básicos y familias lógicas.
CIRCUITO DE SEÑAL MIXTA
Este tipo de circuitos, también conocidos como circuitos híbridos, contienen componentes analógicos y digitales, y se están haciendo cada vez más comunes. Los conversores analógico-digital y los conversores digital-analógico son los principales ejemplos.
CIRCUITO DE CORRIENTE CONTINUA
En este punto se describirán los principales circuitos en corriente continua así como su análisis, esto es, el cálculo de las intensidades, tensiones o potencias.
Divisor De Tension
Dos o más resistencias conectadas en serie forman un divisor de tensión. De acuerdo con la segunda ley de Kirchhoff o ley de las mallas, la tensión total es suma de las tensiones parciales en cada resistencia, por lo que seleccionando valores adecuados de las mismas, se puede dividir una tensión en los valores más pequeños que se deseen. La tensión Vi en bornes de la resistencia Ri, en un divisor de tensión de n resistencias cuya tensión total es V, viene dada por:
Divisor De Intensidad
Dos o más resistencias conectadas en paralelo forman un divisor de intensidad. De acuerdo con la primera ley de Kirchhoff o ley de los nudos, la corriente que entra en un nudo es igual a la suma de las corrientes que salen. Seleccionando valores adecuados de resistencias se puede dividir una corriente en los valores más pequeños que se deseen.
En el caso particular de un divisor de dos resistencias (figura 2 b), es posible determinar las corrientes parciales que circulan por cada resistencia, I1 e I2, en función de la corriente total, I, sin tener que calcular previamente la caída de tensión en la asociación. Para ello se utilizan las siguientes ecuaciones de fácil deducción
CIRCUITOS SERIES RL Y RC
Los circuitos serie RL y RC (figura 6) tienen un comportamiento similar en cuanto a su respuesta en corriente y en tensión, respectivamente.
Al cerrar el interruptor S en el circuito serie RL, la bobina crea una fuerza electromotriz (f.e.m.) que se opone a la corriente que circula por el circuito, denominada por ello fuerza contraelectromotriz. Como consecuencia de ello, en el mismo instante de cerrar el interruptor (t0 en la figura 7) la intensidad será nula e irá aumentando exponencialmente hasta alcanzar su valor máximo, Io = E / R (de t0 a t1). Si a continuación, en el mismo instante de abrir S (t2 en la figura 7) se hará corto circuito en la red RL, el valor de Io no desaparecería instantáneamente, sino que iría disminuyendo de forma exponencial hasta hacerse cero (de t2 a t3).
Por otro lado, en el circuito serie RC, al cerrar el interruptor , el condensador comienza a cargarse, aumentando su tensión exponencialmente hasta alcanzar su valor máximo E0 (de t0 a t1), que coincide con el valor de la f.e.m. E de la fuente. Si a continuación, en el mismo instante de abrir S (t2 en la figura 7) se hará corto circuito en la red RC, el valor de Eo no desaparecería instantáneamente, sino que iría disminuyendo de forma exponencial hasta hacerse cero (de t2 a t3).
En ambos circuitos se da por lo tanto dos tipos de régimen de funcionamiento
* Transitorio: desde t0 a t1 (carga) y desde t2 a t3 * Permanente: desde t1 a t2
CIRCUITO DE CORRIENTE ALTERNA
En el presente apartado se verán las caraterísticas de los circuitos básicos de CA senoidal que están formados por los componentes eléctricos fundamentales: resistencia, bobina y condensador (ver previamente su comportamiento en DC). En cuanto a su análisis, todo lo visto en los circuitos de corriente continua es válido para los de alterna con la salvedad que habrá que operar con números complejos en lugar de con reales. Además se deberán tener en cuenta las siguientes condiciones:
* Todas las fuentes deben ser sinusoidales y tener la misma frecuencia o pulsación. * Debe estar en régimen estacionario, es decir, una vez que los fenómenos transitorios que se producen a la conexión del circuito se hayan atenuado completamente. * Todos los componentes del circuito deben ser lineales, o trabajar en un régimen tal que puedan considerarse como lineales. Los circuitos con diodos están excluidos y los resultados con inductores con núcleo ferromagnético serán solo aproximaciones.
CIRCUITO PARALELO
El circuito paralelo es una conexión donde, los bornes o terminales de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.
Siguiendo un símil hidráulico, dos depósitos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo.
En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones
La historia de la electricidad se refiere al estudio y uso humano de la electricidad, al descubrimiento de sus leyes como fenómeno físico y a la invención de artefactos para su uso práctico.
El fenómeno en sí, fuera de su relación con el observador humano, no tiene historia; y si se la considerase como parte de la historia natural, tendría tanta como el tiempo, el espacio, la materia y la energía. Como también se denomina electricidad a la rama de la ciencia que estudia el fenómeno y a la rama de la tecnología que lo aplica, la historia de la electricidad es la rama de la historia de la ciencia y de la historia de la tecnología que se ocupa de su surgimiento y evolución.
Uno de sus hitos iniciales puede situarse hacia el año 600 a. C., cuando el filósofo griego Tales de Mileto observó que frotando una varilla de ámbar con una piel o con lana, se obtenían pequeñas cargas (efecto triboeléctrico) que atraían pequeños objetos, y frotando mucho tiempo podía causar la aparición de una chispa. Cerca de la antigua ciudad griega de Magnesia se encontraban las denominadas piedras de Magnesia, que incluían magnetita. Los antiguos griegos observaron que los trozos de este material se atraían entre sí, y también a pequeños objetos de hierro. Las palabras magneto (equivalente en español a imán) y magnetismo derivan de ese topónimo.
La electricidad evolucionó históricamente desde la simple percepción del fenómeno, a su tratamiento científico, que no se haría sistemático hasta el siglo XVIII. Se registraron a lo largo de la Edad Antigua y Media otras observaciones aisladas y simples especulaciones, así como intuiciones médicas (uso de peces eléctricos en enfermedades como la gota y el dolor de cabeza) referidas por autores como Plinio el Viejo y Escribonio Largo,[1] u objetos arqueológicos de interpretación discutible, como la Batería de Bagdad,[2] un objeto encontrado en Iraq en 1938, fechado alrededor de 250 a. C., que se asemeja a una celda electroquímica. No se han encontrado documentos que evidencien su utilización, aunque hay otras descripciones anacrónicas de dispositivos eléctricos en muros egipcios y escritos antiguos.
Esas especulaciones y registros fragmentarios son el tratamiento casi exclusivo (con la notable excepción del uso del magnetismo para la brújula) que hay desde la Antigüedad hasta la Revolución científica del siglo XVII; aunque todavía entonces pasa a ser poco más que un espectáculo para exhibir en los salones. Las primeras aportaciones que pueden entenderse como aproximaciones sucesivas al fenómeno eléctrico fueron realizadas por investigadores sistemáticos como William Gilbert, Otto von Guericke, Du Fay, Pieter van Musschenbroek (botella de Leyden) o William Watson. Las observaciones sometidas a método científico empiezan a dar sus frutos con Luigi Galvani, Alessandro Volta, Charles-Augustin de Coulomb o Benjamin Franklin, proseguidas a comienzos del siglo XIX por André-Marie Ampère, Michael Faraday o Georg Ohm. Los nombres de estos pioneros terminaron bautizando las unidades hoy utilizadas en la medida de las distintas magnitudes del fenómeno. La comprensión final de la electricidad se logró recién con su unificación con el magnetismo en un único fenómeno electromagnético descrito por las ecuaciones de Maxwell (1861-1865).
El telégrafo eléctrico (Samuel Morse, 1833, precedido por Gauss y Weber, 1822) puede considerarse como la primera gran aplicación en el campo de las telecomunicaciones, pero no será en la primera revolución industrial, sino a partir del cuarto final del siglo XIX cuando las aplicaciones económicas de la electricidad la convertirán en una de las fuerzas motrices de la segunda revolución industrial. Más que de grandes teóricos como Lord Kelvin, fue el momento de ingenieros, como Zénobe Gramme, Nikola Tesla, Frank Sprague, George Westinghouse, Ernst Werner von Siemens, Alexander Graham Bell y sobre todo Thomas Alva Edison y su revolucionaria manera de entender la relación entre investigación científico-técnica y mercado capitalista. Los sucesivos cambios de paradigma de la primera mitad del siglo XX (relativista y cuántico) estudiarán la función de la electricidad en una nueva dimensión: atómica y subatómica. Multiplicador de tensión Cockcroft-Walton utilizado en un acelerador de partículas de 1937, que alcanzaba un millón de voltios.
QUE ES ELECTRICIDAD
La electrificación no sólo fue un proceso técnico, sino un verdadero cambio social de implicaciones extraordinarias, comenzando por el alumbrado y siguiendo por todo tipo de procesos industriales (motor eléctrico, metalurgia, refrigeración...) y de comunicaciones (telefonía, radio). Lenin, durante la Revolución bolchevique, definió el socialismo como la suma de la electrificación y el poder de los soviets,[3] pero fue sobre todo la sociedad de consumo que nació en los países capitalistas, la que dependió en mayor medida de la utilización doméstica de la electricidad en los electrodomésticos, y fue en estos países donde la retroalimentación entre ciencia, tecnología y sociedad desarrolló las complejas estructuras que permitieron los actuales sistemas de I+D e I+D+I, en que la iniciativa pública y privada se interpenetran, y las figuras individuales se difuminan en los equipos de investigación.
La energía eléctrica es esencial para la sociedad de la información de la tercera revolución industrial que se viene produciendo desde la segunda mitad del siglo XX (transistor, televisión, computación, robótica, internet...). Únicamente puede comparársele en importancia la motorización dependiente del petróleo (que también es ampliamente utilizado, como los demás combustibles fósiles, en la generación de electricidad). Ambos procesos exigieron cantidades cada vez mayores de energía, lo que está en el origen de la crisis energética y medioambiental y de la búsqueda de nuevas fuentes de energía, la mayoría con inmediata utilización eléctrica (energía nuclear y energías alternativas, dadas las limitaciones de la tradicional hidroelectricidad). Los problemas que tiene la electricidad para su almacenamiento y transporte a largas distancias, y para la autonomía de los aparatos móviles, son retos técnicos aún no resueltos de forma suficientemente eficaz.
El impacto cultural de lo que Marshall McLuhan denominó Edad de la Electricidad, que seguiría a la Edad de la Mecanización (por comparación a cómo la Edad de los Metales siguió a la Edad de Piedra), radica en la altísima velocidad de propagación de la radiación electromagnética (300.000 km/s) que hace que se perciba de forma casi instantánea. Este hecho conlleva posibilidades antes inimaginables, como la simultaneidad y la división de cada proceso en una secuencia. Se impuso un cambio cultural que provenía del enfoque en "segmentos especializados de atención" (la adopción de una perspectiva particular) y la idea de la "conciencia sensitiva instantánea de la totalidad", una atención al "campo total", un "sentido de la estructura total". Se hizo evidente y prevalente el sentido de "forma y función como una unidad", una "idea integral de la estructura y configuración". Estas nuevas concepciones mentales tuvieron gran impacto en todo tipo de ámbitos científicos, educativos e incluso artísticos (por ejemplo, el cubismo). En el ámbito de lo espacial y político, "la electricidad no centraliza, sino que descentraliza... mientras que el ferrocarril requiere un espacio político uniforme, el avión y la radio permiten la mayor discontinuidad y diversidad en la organización espacial".[4
El término energía (del griego ἐνέργεια/energeia, actividad, operación; ἐνεργóς/energos=fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento. En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para extraerla, transformarla, y luego darle un uso industrial o económico.
El concepto de energía en física
En la física, la ley universal de conservación de la energía, que es la base para el primer principio de la termodinámica, indica que la energía ligada a un sistema aislado permanece en el tiempo. No obstante, la teoría de la relatividad especial establece una equivalencia entre masa y energía por la cual todos los cuerpos, por el hecho de estar formados de materia, contienen energía; además, pueden poseer energía adicional que se divide conceptualmente en varios tipos según las propiedades del sistema que se consideren. Por ejemplo, la energía cinética se cuantifica según el movimiento de la materia, la energía química según la composición química, la energía potencial según propiedades como el estado de deformación o a la posición de la materia en relación con las fuerzas que actúan sobre ella y la energía térmica según el estado termodinámico.
La energía no es un estado físico real, ni una "sustancia intangible" sino sólo una magnitud escalar que se le asigna al estado del sistema físico, es decir, la energía es una herramienta o abstracción matemática de una propiedad de los sistemas físicos. Por ejemplo, se puede decir que un sistema con energía cinética nula está en reposo. Se utiliza como una abstracción de los sistemas físicos por la facilidad para trabajar con magnitudes escalares, en comparación con las magnitudes vectoriales como la velocidad o la posición. Por ejemplo, en mecánica, se puede describir completamente la dinámica de un sistema en función de las energías cinética, potencial, que componen la energía mecánica, que en la mecánica newtoniana tiene la propiedad de conservarse, es decir, ser invariante en el tiempo.
Matemáticamente, la conservación de la energía para un sistema es una consecuencia directa de que las ecuaciones de evolución de ese sistema sean independientes del instante de tiempo considerado, de acuerdo con el teorema de Noether.
Energía en diversos tipos de sistemas físicos La energía también es una magnitud física que se presenta bajo diversas formas, está involucrada en todos los procesos de cambio de Estado físico, se transforma y se transmite, depende del sistema de referencia y fijado éste se conserva.[1] Por lo tanto todo cuerpo es capaz de poseer energía, esto gracias a su movimiento, a su composición química, a su posición, a su temperatura, a su masa y a algunas otras propiedades. En las diversas disciplinas de la física y la ciencia, se dan varias definiciones de energía, por supuesto todas coherentes y complementarias entre sí, todas ellas siempre relacionadas con el concepto de trabajo.
Física clásica En la mecánica se encuentran:
Energía mecánica, que es la combinación o suma de los siguientes tipos: Energía cinética: relativa al movimiento. Energía potencial: la asociada a la posición dentro de un campo de fuerzas conservativo. Por ejemplo, está la Energía potencial gravitatoria y la Energía potencial elástica (o energía de deformación, llamada así debido a las deformaciones elásticas). Una onda también es capaz de transmitir energía al desplazarse por un medio elástico. En electromagnetismo se tiene a la:
Energía electromagnética, que se compone de: Energía radiante: la energía que poseen las ondas electromagnéticas. Energía calórica: la cantidad de energía que la unidad de masa de materia puede desprender al producirse una reacción química de oxidación. Energía potencial eléctrica (véase potencial eléctrico) Energía eléctrica: resultado de la existencia de una diferencia de potencial entre dos puntos. En la termodinámica están:
Energía interna, que es la suma de la energía mecánica de las partículas constituyentes de un sistema. Energía térmica, que es la energía liberada en forma de calor, obtenida de la naturaleza (energía geotérmica) mediante la combustión. Física relativista En la relatividad están:
Energía en reposo, que es la energía debida a la masa según la conocida fórmula de Einstein, E=mc2, que establece la equivalencia entre masa y energía. Energía de desintegración, que es la diferencia de energía en reposo entre las partículas iniciales y finales de una desintegración. Al redefinir el concepto de masa, también se modifica el de energía cinética (véase relación de energía-momento).
Física cuántica En física cuántica, la energía es una magnitud ligada al operador hamiltoniano. La energía total de un sistema no aislado de hecho puede no estar definida: en un instante dado la medida de la energía puede arrojar diferentes valores con probabilidades definidas. En cambio, para los sistemas aislados en los que el hamiltoniano no depende explícitamente del tiempo, los estados estacionarios sí tienen una energía bien definida. Además de la energía asociadas a la materia ordinaria o campos de materia, en física cuántica aparece la:
Energía del vacío: un tipo de energía existente en el espacio, incluso en ausencia de materia. Química En química aparecen algunas formas específicas no mencionadas anteriormente:
Energía de ionización, una forma de energía potencial, es la energía que hace falta para ionizar una molécula o átomo. Energía de enlace, es la energía potencial almacenada en los enlaces químicos de un compuesto. Las reacciones químicas liberan o absorben esta clase de energía, en función de la entalpía y energía calórica. Si estas formas de energía son consecuencia de interacciones biológicas, la energía resultante es bioquímica, pues necesita de las mismas leyes físicas que aplican a la química, pero los procesos por los cuales se obtienen son biológicos, como norma general resultante del metabolismo celular (véase Ruta metabólica). Energía potencial Artículo principal: Energía potencial Es la energía que se le puede asociar a un cuerpo o sistema conservativo en virtud de su posición o de su configuración. Si en una región del espacio existe un campo de fuerzas conservativo, la energía potencial del campo en el punto (A) se define como el trabajo requerido para mover una masa desde un punto de referencia (nivel de tierra) hasta el punto (A). Por definición el nivel de tierra tiene energía potencial nula. Algunos tipos de energía potencial que aparecen en diversos contextos de la física son:
La energía potencial gravitatoria asociada a la posición de un cuerpo en el campo gravitatorio (en el contexto de la mecánica clásica). La energía potencial gravitatoria de un cuerpo de masa m en un campo gravitatorio constante viene dada por: donde h es la altura del centro de masas respecto al cero convencional de energía potencial. La energía potencial electrostática V de un sistema se relaciona con el campo eléctrico mediante la relación:
La energía potencial elástica asociada al campo de tensiones de un cuerpo deformable. La energía potencial puede definirse solamente cuando existe un campo de fuerzas que es conservativa, es decir, que cumpla con alguna de las siguientes propiedades:
El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido. El trabajo realizado por la fuerza para cualquier camino cerrado es nulo. Cuando el rotor de F es cero (sobre cualquier dominio simplemente conexo). Se puede demostrar que todas las propiedades son equivalentes (es decir que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial en un punto arbitrario se define como la diferencia de energía que tiene una partícula en el punto arbitrario y otro punto fijo llamado "potencial cero".
Energía cinética de una masa puntual La energía cinética es un concepto fundamental de la física que aparece tanto en mecánica clásica, como mecánica relativista y mecánica cuántica. La energía cinética es una magnitud escalar asociada al movimiento de cada una de las partículas del sistema. Su expresión varía ligeramente de una teoría física a otra. Esta energía se suele designar como K, T o Ec.
El límite clásico de la energía cinética de un cuerpo rígido que se desplaza a una velocidad v viene dada por la expresión:
Una propiedad interesante es que esta magnitud es extensiva por lo que la energía de un sistema puede expresarse como "suma" de las energía de partes disjuntas del sistema. Así por ejemplo puesto que los cuerpos están formados de partículas, se puede conocer su energía sumando las energías individuales de cada partícula del cuerpo.
Magnitudes relacionadas La energía se define como la capacidad de realizar un trabajo. Energía y trabajo son equivalentes y, por tanto, se expresan en las mismas unidades. El calor es una forma de energía, por lo que también hay una equivalencia entre unidades de energía y de calor. La capacidad de realizar un trabajo en una determinada cantidad de tiempo es la potencia.
Transformación de la energía Para la optimización de recursos y la adaptación a nuestros usos, necesitamos transformar unas formas de energía en otras. Todas ellas se pueden transformar en otra cumpliendo los siguientes principios termodinámicos:
“La energía no se crea ni se destruye; sólo se transforma”. De este modo, la cantidad de energía inicial es igual a la final. “La energía se degrada continuamente hacia una forma de energía de menor calidad (energía térmica)”. Dicho de otro modo, ninguna transformación se realiza con un 100% de rendimiento, ya que siempre se producen unas pérdidas de energía térmica no recuperable. El rendimiento de un sistema energético es la relación entre la energía obtenida y la que suministramos al sistema. Unidades de medida de energía La unidad de energía definida por el Sistema Internacional de Unidades es el julio, que se define como el trabajo realizado por una fuerza de un newton en un desplazamiento de un metro en la dirección de la fuerza, es decir, equivale a multiplicar un Newton por un metro. Existen muchas otras unidades de energía, algunas de ellas en desuso.
Nombre Abreviatura Equivalencia en julios Caloría cal 4,1855 Frigoría fg 4.185.5 Termia th 4.185.500 Kilovatio hora kWh 3.600.000 Caloría grande Cal 4.185,5 Tonelada equivalente de petróleo Tep 41.840.000.000 Tonelada equivalente de carbón Tec 29.300.000.000 Tonelada de refrigeración TR 3,517/h Electronvoltio eV 1.602176462 × 10-19 British Thermal Unit BTU 1.055,05585[2] Board of Trade unit BTu 3600000[3] Cheval vapeur heure CVh 3.777154675 × 10-7[4] Ergio erg 1 × 10-7 Foot pound ft × lb 1,35581795 Poundal foot pdl × ft 4.214011001 × 10-11[5]
La energía como recurso natural Artículo principal: Energía (tecnología) En tecnología y economía, una fuente de energía es un recurso natural, así como la tecnología asociada para explotarla y hacer un uso industrial y económico del mismo. La energía en sí misma nunca es un bien para el consumo final sino un bien intermedio para satisfacer otras necesidades en la producción de bienes y servicios. Al ser un bien escaso, la energía es fuente de conflictos para el control de los recursos